STATEMENT OF

MICHAEL L. VAN LINN, PH.D
DRUG SCIENCE SPECIALIST
DRUG AND CHEMICAL EVALUATION SECTION
DIVERSION CONTROL DIVISION
DRUG ENFORCEMENT ADMINISTRATION

BEFORE THE

UNITED STATES SENTENCING COMMISSION

FOR A PUBLIC HEARING ON FENTANYL AND SYNTHETIC CANNABINOIDS

PRESENTED

DECEMBER 5, 2017
Introduction

Acting Chair Pryor and Members of the Sentencing Commission, thank you for the opportunity to discuss the chemical structures of fentanyl and fentanyl analogues. The dramatic increase in trafficking and abuse of designer synthetic opioids, such as fentanyl and fentanyl analogues, has emerged during a time when the incidence of opioid abuse in the United States is already at alarming levels. The proliferation of fentanyl analogues mirrors the evolution of other novel psychoactive substances (NPS). Fentanyl and fentanyl analogues have a history of being trafficked as replacements for other opioids, such as heroin. In the 1970s and 1980s, fentanyl and fentanyl analogues appeared on the illicit drug market and overdoses were documented.\(^1\)

Currently, traffickers are again exploiting available legitimate research information on structure activity relationships, making small changes to the chemical structure of fentanyl and distributing these fentanyl analogues in the illicit drug market. As the opioid dependent population has increased, the parallel transition to more potent opioids, such as fentanyl analogues, has also increased. Since 2015, the Drug Enforcement Administration (DEA) has responded with six temporary scheduling actions to control nine fentanyl analogues in Schedule I of the Controlled Substances Act. Responding to the introduction of new fentanyl analogues in the illicit drug market remains a priority for the DEA.

Background

Fentanyl was first synthesized in Belgium in the late 1950s. Structurally, fentanyl belongs to the 4-anilidopiperidine structural class, a group of substances that have been well studied for their analgesic effects. Fentanyl analogues have chemical structures that are similar to that of fentanyl, but with small chemical structural modifications. A large number of fentanyl analogues have been synthesized and evaluated to establish structure-activity relationships. Structure-activity relationships that detail the various modifications possible to fentanyl’s chemical structure have been described in the scientific literature.\(^2\) These structure-activity relationships

highlight the relative ease of modifying chemical structures in this structural class. Some fentanyl analogues that have emerged on the illicit market were previously described in the scientific and patent literature, often accompanied by pharmacological data and detailed instructions for their synthesis.

Chemistry of fentanyl and its analogues

The synthesis of fentanyl and fentanyl analogues requires familiarity with synthetic organic chemistry. The design of new fentanyl analogues, however, is a straightforward endeavor. New analogues can be synthesized using the same chemical steps that are used to make fentanyl. With substitution of one or more of the chemicals used in these synthetic steps, a new substance can be produced. For example, a group of fentanyl analogues (e.g., acetyl fentanyl, acryl fentanyl, butyryl fentanyl, furanyl fentanyl, and others) can all be synthesized in a single step starting from 4-anilino-N-phenethylpiperidine (4-ANPP), a Schedule II immediate precursor to fentanyl. Figure 1 shows one of several known synthetic routes to fentanyl. In this pathway, a different chemical can be substituted at any stage in the synthesis to create structural modifications to fentanyl and ultimately produce a new final chemical structure. The ease of creating new fentanyl analogues is attractive to medicinal chemists researching this structural class. Unfortunately, this structural class is attractive to clandestine chemists researching this structural class.

Since 2015, many new fentanyl analogues on the illicit drug market differ from fentanyl by modification of the acyl group, the aniline ring, or both (see Table 1). Historically, fentanyl

10 Y. Higashikawa & S. Suzuki, Studies on 1-(2-phenethyl-4-(N-propionylanilino)piperidine (Fentanyl) and Its Related Compounds. VI. Structure-analgesic Activity Relationship for Fentanyl, MethyI-subsstuted Fentanyls and Other Analgeses, 26 Forensic Toxicology, 1-5 (2008).
analogues have included structural modifications to every part of fentanyl’s chemical structure: the phenethyl group, the piperidine ring, the aniline ring, and the acyl group (Figure 2).

![Figure 2. Fentanyl sites of substitution.](image)

Table 1. Examples of recent structural modifications to fentanyl observed on the illicit market.

<table>
<thead>
<tr>
<th>Substance</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>fentanyl¹⁴</td>
<td>-CH₂CH₃</td>
<td>H</td>
</tr>
<tr>
<td>acetyl fentanyl</td>
<td>-CH₃</td>
<td>H</td>
</tr>
<tr>
<td>butyryl fentanyl</td>
<td>-CH₂CH₂CH₃</td>
<td>H</td>
</tr>
<tr>
<td>furanyl fentanyl</td>
<td>-furan-2-yl</td>
<td>H</td>
</tr>
<tr>
<td>4-fluoroisobutyryl fentanyl</td>
<td>-CH(CH₃)₂</td>
<td>para-F</td>
</tr>
<tr>
<td>acryl fentanyl</td>
<td>-CH=CH₂</td>
<td>H</td>
</tr>
<tr>
<td>ortho-fluorofentanyl</td>
<td>-CH₂CH₃</td>
<td>ortho-F</td>
</tr>
<tr>
<td>tetrahydrofuranyl fentanyl</td>
<td>-tetrahydrofuran-2-yl</td>
<td>H</td>
</tr>
<tr>
<td>methoxyacetyl fentanyl</td>
<td>-CH₂OCH₃</td>
<td>H</td>
</tr>
<tr>
<td>cyclopropyl fentanyl</td>
<td>-cyclopropyl</td>
<td>H</td>
</tr>
<tr>
<td>valeryl fentanyl</td>
<td>-CH₂CH₂CH₂CH₃</td>
<td>H</td>
</tr>
<tr>
<td>isobutyryl fentanyl</td>
<td>-CH(CH₃)₂</td>
<td>H</td>
</tr>
<tr>
<td>para-chloroisobutyryl fentanyl</td>
<td>-CH(CH₃)₂</td>
<td>para-Cl</td>
</tr>
<tr>
<td>para-methoxybutyryl fentanyl</td>
<td>-CH₂CH₂CH₃</td>
<td>para-OCH₃</td>
</tr>
<tr>
<td>cyclopentyl fentanyl</td>
<td>-cyclopentyl</td>
<td>H</td>
</tr>
<tr>
<td>ocfentanyl</td>
<td>-CH₂OCH₃</td>
<td>ortho-F</td>
</tr>
<tr>
<td>para-fluorobutyryl fentanyl</td>
<td>-CH₂CH₂CH₂CH₃</td>
<td>para-F</td>
</tr>
</tbody>
</table>

Figures 3 and 4 include fentanyl analogues controlled in the United States in the 1980s, and in the past three years, respectively. Though these figures do not provide a comprehensive list of fentanyl analogues encountered on the illicit drug market, they do illustrate structural modifications to each part of the fentanyl structure. Many additional structural modifications remain possible, and based on historical trends, it is anticipated new fentanyl analogues will be

¹⁴ Fentanyl is included for reference.
encountered on the illicit market. Currently, there are 18 fentanyl analogues listed in Schedule I and 5 fentanyl analogues, in addition to fentanyl, listed in Schedule II.

Figure 3. Fentanyl analogues controlled in Schedule I in the 1980s.

Figure 4. Fentanyl analogues controlled in Schedule I since 2015.

15 The chemical structure of fentanyl is shown for reference.

17 The chemical structure of fentanyl is shown for reference.
Forensic laboratory data showed that law enforcement encounters of fentanyl and fentanyl analogues markedly increased since 2012. For example, according to DEA’s National Forensic Laboratory Information System (NFLIS), a national forensic drug laboratory reporting system that systematically collects results from drug chemistry analyses conducted by federal, state and local forensic laboratories across the country, law enforcement encounters of fentanyl increased by more than 50-fold from 694 reports in 2012 to 36,134 reports in 2016. NFLIS reports for fentanyl analogues increased from 3 in 2012 to 6,926 in 2016. As of October 30, 2017, NFLIS reports for January - June 2017 for fentanyl and fentanyl analogues were 21,872 and 6,808, respectively.

Conclusion

In summary, the fentanyl analogues that have been encountered on the illicit market have been related to fentanyl in chemical structure, many additional structural modifications remain possible, and, based on historical trends, it is anticipated that new fentanyl analogues will be encountered on the illicit market. We believe a class approach based on structure would capture fentanyl-related substances. Thank you for the opportunity to discuss the chemical structures of fentanyl and fentanyl analogues. I welcome the chance to answer any questions the Commission may have during the upcoming hearing.

19 Database queried on October 30, 2017.